資訊工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60

本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。

News

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    提供具可解釋並改善評論缺漏問題之推薦系統
    (2020) 陳佑翔; Chen, You-Xiang
    儘管以評論特徵為基礎的相關研究,證實能克服用戶-商品間評分資料稀疏的問題以提升評分預測效能,然而其並未考慮評論缺漏的問題。本論文參考採用評論之階層式注意力神經網路模型HANN,更改原模型中部分輸入特徵資訊,並調整不同層級注意力機制的權重計算方式;此模型稱為HANN-RPM,用來進行用戶對商品的評分預測。此外,另建立了一個以編碼器-解碼器架構為基礎的評論生成模型HANN-RGM,結合HANN-RPM的商品子網路架構為編碼器,不僅可用於對評分結果生成文字解釋內容,並可用於對用戶未撰寫評論的購買商品補充缺漏的評論後提供給HANN-RPM,進一步提升評分預測的效果。實驗結果顯示,不論有無缺漏評論的情況下,HANN-RPM皆較HANN有更佳評分預測效果。而當用戶具有評論缺漏的情況,透過HANN-RGM生成缺漏部份的評論補足,可令HANN-RPM預測出接近於無評論缺漏情況下的評分預測效果。此外,HANN-RGM模型透過擷取出前k筆評論中的商品語意資訊,比起NRT能生成出更長且更多樣性的評論內容,可作為評分預測之文字解釋。
  • Item
    結合韻律特徵與聲學特徵於錯誤發音檢測與診斷之研究
    (2019) 林奕儒; Lin, Yi-Ju
    本論文探討韻律特徵應用多任務深層網路模型於錯誤發音檢測及診斷(mispronunciation detection and diagnosis, MDD)之研究。電腦輔助發音訓練(computer assisted pronunciation training, CAPT)之目的在於透過電腦自動地指正外語學習者的發音問題;其在程序上大致可分為錯誤發音檢測(mispronunciation detection)與錯誤發音診斷(mispronunciation diagnosis)等兩個階段。本論文主要探討 1.)韻律特徵與聲學特徵結合後對於錯誤發音檢測與診斷的幫助。 2.)希望利用多任務深層網路模型解決資料正例反例不平衡之問題。 3.)結合基於相似度的評分(likelihood-based scoring,GOP)以及基於分類器評分(classification-based scoring)的方法達到更好的檢測結果以及診斷結果。 實驗結果顯示,聲學特徵對於錯誤發音檢測任務較有幫助;而韻律特徵對錯誤發音診斷任務有較好的助益。