學習資訊專業學院—資訊教育研究所

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/25

資訊教育研究所之碩士班成立於民國80年,博士班成立於民國86年,目前研究生共約160名。本所原屬資訊教育學系,於95學年度起因應系所組織調整,成為獨立研究所,歸屬教育學院。

本所以『資訊科技教育』和『數位學習』兩個專業領域之研究發展與人才培育為宗旨,課程設計分別針對此兩個專業領域規劃必、選修專業科目,提供學生紮實而嚴謹的學術專業知能及個別化之研究訓練。本所教育目標包括:

1、培育資訊科技教育人才;
2、培育數位學習產業人才;
3、培育資訊科技教育與數位學習研究人才。

本所目前六名專任教師,四位教授,二位副教授,在資訊教育領域均具有豐富之教學與研究經驗且均積極從事研究,每年獲科技部補助研究計畫之平均數量與金額在本校名列前茅。另外,本所教師積極參與國內重大資訊教育政策及課程綱要之制定,積極推動國內資訊教育之發展。
 

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    中文文本可讀性特徵選取與模型建立 - 以華語為第二語言教材為例
    (2012) 陳于佳; Yu-Chia Chen
    由於全球學習華語熱潮的興起,學習華語的人數年年增加。不論是母語學習,或者是第二語言學習,閱讀在語言學習中都扮演了重要的角色。但如何選擇適當難易度的文本是在閱讀過程中常面臨到的問題。教師在教學時必須選擇符合學習者程度的教材,來提高華語文教學的效率。 本研究以《新版實用視聽華語》、《遠東生活華語》、《新實用漢語課本》、《中文聽說讀寫》、《讀報學華語》、《實用商業會話》等六套常用華語教材為例,結合特徵選取方法與支援向量機建立預測模型預測文本CEFR等級,並探討不同特徵組合所造成結果的差異。 實驗結果顯示,不需使用全部指標,只須採用較為重要的指標組合即可達到最佳預測正確率,約為85.47%。期盼本研究所建立的可讀性算則不但可提供華語教師能更系統化、循序漸進的教學,學生也可透過此預測模型選擇符合自身程度的課文學習,減少摸索的時間,來達到有效提升學習成效的結果。
  • Item
    使用潛在語意分析建構文本分類模型- 以國小社會科課文為例
    (2011) 黃幀祥
    由於網路的發達和電腦的普及,學生常常透過網路來尋找資料,但往往搜尋結果龐大,且內容涵蓋各個面向,導致學生浪費許多時間在結果中反覆檢閱才得以找出適合程度及目標的文章資訊。可讀性文本分類可以分辨文本所屬的難易層級,讓學生可以選擇適合自己程度的文本,以節省學生尋找適合自己程度的文本的時間。過去可讀性研究多將文本表面特徵代入線性公式求得一個難易度的分數,但是在中文環境底下,語意特徵就比表面特徵來的重要,因此本研究利用潛在語意分析技術分析文本的語意特徵,再以語意特徵作為分類依據對文本進行可讀性的分類。本研究資料採用國小社會科課文,利用每個學期不同主題的特性,透過潛在語意分析技術建置一個社會科的語意空間模型,利用建構好的語意空間模型將未知程度的社會科文章分類至所屬的層級。 本研究在國小社會科以學期為分類的分類結果,在分析的準確率達79.06%,在分類上可達到不錯的效果。潛在語意分析提供可讀性研究另一個角度的思維,以文本所傳達的「語意」為分析依據,特別適用重視語意的中文環境。