理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    適用於高維度影像之相位展開法則電路設計
    (2011) 程士彰
    本論文旨在提出一個相位展開法則硬體電路架構,此硬體架構適用於嵌入式的數位全像顯微鏡(Digital Holographic Microscopy, DHM)系統,能夠加速數位全像顯微鏡系統的相位展開運算來立即取得還原後的影像相位圖。本硬體架構採用以快速傅立葉轉換為基礎的相位展開法則來設計,採用此演算法的原因在於實現出來的硬體架構所需花費的硬體資源比較少,並且對於影像中受到雜訊破壞而產生誤差的影像相位數值,也有能力修正這些錯誤的相位資訊。本硬體架構主要可分為兩種單元所組成,一種是運算單元,另一種是儲存單元;其中所有的運算單元皆以管線化架構的方式實現,而記憶單元則使用on-chip RAM作為提供來源資料以及儲存計算途中的暫時資料或是計算完畢的最終結果。 最後我們以現場可程式化邏輯閘陣列(Field Programmable Gate Array ,FPGA) 為開發平台實現並實際測量硬體電路的資源消耗以及運算時間;實驗的結果顯示了本論文所提出的相位展開法則硬體架構能夠得到正確的還原結果,並且有效的大幅降低相位展開運算所需要花費的時間以及擁有低硬體資源消耗的優點,因此適合使用於嵌入式的DHM系統。
  • Item
    島嶼式基因演算法之硬體架構及其在向量量化器之應用
    (2010) 游宗毅; Tsung-Yi Yu
    本研究為島嶼式基因演算法提出一個硬體架構,並應用於向量化器的設計。本文中每個島嶼為steady-state基因演算法的演化加速器,透過這樣的方式可以有效改善其硬體資源之消耗。除此之外,本論文提出一個適用於島嶼間快速的移民(migration)硬體架構,讓每個島嶼可以透過該硬體架構平行的執行移民機制,該硬體中使用了一個Migration table,透過查表可以快速的決定移民方式,並有效降低演化運算的時間消耗,達到系統效能提升之目的。 本研究所提出的系統架構,與擁有相同族群總數的steady-state基因演算法系統架構做比較,研究顯示該系統架構擁有較佳的效能與較少的執行時間。此外,本系統架構與於多核心系統下透過多執行緒模擬島嶼式基因演算法的軟體實驗環境做比較,研究顯示該系統架構擁有極佳的執行加速。
  • Item
    以快速傅立葉轉換為基礎之相位展開法則在可程式化系統晶片上之實現
    (2010) 游敦皓
    本論文提出一個以快速傅立葉轉換為基礎的相位展開法則硬體電路架構,此相位展開硬體電路架構的功能在於加速數位全像顯微鏡(Digital Holographic Microscopy, DHM)的相位展開運算。本架構會依據一個以快速傅立葉轉換為基礎的相位展開演算法則來設計並且實作硬體電路以計算出一個最小平方誤差解(minimum squared error solution)。硬體架構中包含四個主要單元:轉換前單元、快速傅立葉轉換單元、轉換後單元以及嵌入式記憶體,在架構中利用嵌入式記憶體當作暫存空間搭配上其他三個單元的運算來達到加速電路計算的效果。為了驗證本論文提出的硬體架構的正確性,會將本硬體電路設計成客製化的電路放入system on programmable chip(SoPC)系統來實際上測量系統的效能。實驗的結果顯示本論文提出的硬體電路架構可以有效的減少相位展開運算所需要花費的時間以及硬體資源的消耗量,適合於設計嵌入式的DHM系統。
  • Item
    以FPGA電路實現基因向量量化器設計之研究
    (2008) 林定寬; Ting-Kuan Lin
    本論文提出一個新的基因向量量化器(VQ)硬體電路架構,並且利用FPGA開發板實現;此架構是根據Steady-State Genetic Algorithm (GA)所設計而成;此電路包含了族群記憶體單元(population memory unit)、交配突變單元(crossover and mutation unit)、適應值計算單元(fitness evaluation unit)以及生存測試更新單元( survival test and update unit);要強調的是,為了降低面積複雜度(Area Cost),本架構只使用一塊族群記憶體,而且交配突變單元會同時執行來加快電路計算效能;除此之外,更設計了一個利用DMA Controller的Pipeline架構來完成適應值計算單元,並且設計了一個適合做生存測試更新單元的硬體排序電路;最後利用SOPC系統實現並實際測量硬體電路效能;實驗的結果顯示了此基因向量量化器(VQ)硬體電路對於VQ的最佳化是擁有高效能表現以及較少計算時間的優點。