理學院
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3
學院概況
理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。
特色理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。
理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。
在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。
在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。
Browse
69 results
Search Results
Item Multiple Policy Value MCTS 結合 Population Based Training 加強連四棋程式(2024) 蔡宜憲; Tsai, Yi-Sian電腦對局是人工智慧在計算機科學和工程方面的最古老和最著名的應用之一,而AlphaZero在棋類對局領域是一個非常強大的強化學習算法。AlphaZero是用了MCTS與深度神經網路結合的演算法。較大的神經網路在準確評估方面具有優勢,較小的神經網路在成本和效能方面具有優勢,在有限的預算下必須兩者取得平衡。Multiple Policy Value Monte Carlo Tree Search此方法結合了多個不同大小的神經網路,並保留每個神經網路的優勢。本研究以Surag Nair先生在GitHub上的AlphaZero General程式做修改,加入Multiple Policy Value Monte Carlo Tree Search,並實現在連四棋遊戲上。另外在程式中使用了Multiprocessing來加快訓練速度。最後使用了Population Based Training的方式來尋找較佳的超參數。Item 基於深度學習對籃球轉播影像之球場校正及球員追蹤(2024) 連堃玹; Lian, Kun-Syuan許多球類競技運動使用視覺影像資料來識別戰術,並採用相對應的防守策略來應對,以最有效率的方式獲取分數。這些分析資訊採用的研究數據來源在於球員在球場上的位置變化,即軌跡資訊。通常仰賴人力透過逐幀的方式針對球隊的軌跡進行剖析,這往往需要耗費大量的時間與精力。此外,發展技術成熟的光學影像追蹤系統其背後所需要的器材成本及後續維護的費用使其難以普及使用。近年來,由於拍攝器材以及多媒體串流技術的進步,網路上有豐富且大量的轉播資訊提供獲取比賽資訊另一種途徑。因此,本研究基於籃球影像畫面提出了球員定位及追蹤軌跡方法 (Basketball Player Position Tracking Trajectory, BPT),基於轉播影像自動化生成球員在比賽過程中的軌跡資料。本研究所提出的BPT校正方法僅需使用籃球轉播系統的影像畫面作為輸入,即可生成雙方球隊在每次的攻防過程中的實際軌跡資訊,為後續的進階應用資訊分析提供重要的資訊來源。在BPT方法中,由轉播影像的球場校正方法與球員追蹤方法兩個模組所組成。在球場校正方法中,以三階段的深度模型任務實現端對端預測校正單應性矩陣。在球員追蹤方面,本研究基於追蹤演算法獲得初步的追蹤結果,通過BPT方法中的特徵模型提取更具鑑別度的球員特徵,結合貪婪合併軌跡的方式將片段的軌跡重新關聯,以達到更穩定的追蹤效果。實驗結果顯示,在球場校正準確性方面,採用交集比 (Intersection over Union, IoU) 評估校正的準確程度,在半場校正準確率高達到 87%。在球員追蹤的準確度採用高階追蹤準確率 (Higher Order Tracking Accuracy, HOTA) 評估多目標追蹤的成效。整體對球員的追蹤準確度可達 77%。根據使用情境,選擇適當的追蹤門檻值,最終採用最佳的追蹤演算法結合本研究的BPT方法,在球員追蹤準確率可高達 82%。Item 基於深度學習之鯨豚個體身分辨識系統(2024) 蔡妤涓; Tsai, Yu-Chuan本研究提出一個基於深度學習之鯨豚個體身分辨識系統,希望透過鯨豚個體身分辨識的技術,追蹤鯨豚遷徙路徑來估算鯨豚族群數量,進一步評估和保護海洋生態系統的健康。研究目標為辨識同一物種內不同鯨豚個體的生物特徵,以及同一隻鯨豚在不同拍攝環境下的影像特徵差異。由於鯨豚資料集中存在影像品質不穩定和個體影像數量極不平均的問題,故本研究著手解決這些問題,包含資料前處理(Data Preprocessing)、提出模型改良方法,及不同面向的測試方法。本系統首先對鯨豚資料集進行資料前處理,接著進行鯨豚偵測,最後作鯨豚個體身分辨識。資料集前處理包括資料清理(Data Cleaning)和資料增強(Data Augmentation),其目的在解決資料集中的潛在問題。在鯨豚偵測階段,採用YOLOv5定位鯨豚位置,過濾背景雜訊以增加模型訓練速度。在鯨豚個體身分辨識階段,利用骨幹模型(Backbone Model)從鯨豚影像中提取特徵,並使用頭部模型(Head Model)進行個體身分預測。本研究使用EfficientNetV1-B4作為骨幹模型,頭部模型使用附加角度邊界損失函數(ArcFace)。針對資料集問題對頭部模型進行改良,以提高鯨豚個體身分辨識的正確率。透過在ArcFace加入子中心(Sub-center)向量,解決同一隻鯨豚在不同拍攝環境下的影像特徵差異的問題,從而提升鯨豚個體身分辨識的正確率。此外,引入動態邊界(Dynamic Margin)解決在訓練階段鯨豚個體影像數量極不平均的問題,加快模型的收斂速度。實驗結果顯示改良後的子中心附加角度邊界損失函數在三個面向的測試 實際應用情況、多數合成資料庫(Synthetic Data),和部分合成資料庫(影像數量3張以上的鯨豚個體)之mAP分別為68.63%、81.60%和35.70%。相較於原始的ArcFace提升4.83%、6.08%和8.19%。另外,將動態邊界應用於子中心附加角度邊界損失函數的改良方案,在維持相當正確率相當的情況下,減少28%的訓練時間。由實驗結果發現,本研究所提出的改良方案能對資料集問題進行適當處理並提升鯨豚個體身分辨識的準確率。Item RIDNet深度學習去噪模型的提升:基於網絡結構與損失函數的調整(2024) 林宜亭; Lin, Yi-Ting自1970年代後期以來,隨著計算機視覺領域和數字影像處理的不斷發展,影像去噪技術也獲得了改善和創新。從最初基於空間域與變換域的濾波器、字典學習和統計模型的方法,到現今基於人工智慧的機器學習技術,可以發現影像去噪的方法日益多樣和精密。儘管許多去噪模型已經取得了相當不錯的成果,但仍然存在一些缺陷,比如需要手動設定參數、優化效果不佳,或者僅適用於特定類型的雜訊等。隨著卷積神經網路學習能力的增強和硬體技術的提升,基於深度學習的技術逐漸成為主要的影像去噪方法。卷積網路不僅能處理大量數據,還能進行高效的訓練和學習。然而,一般情況下的雜訊是無法得知的,因此能夠面對真實影像雜訊的盲去噪模型在當今的影像處理中尤其重要。這些模型必須具備強大的自適應能力,能夠有效地從影像中提取出雜訊的特徵並進行有效的去除,而不需要對雜訊進行先驗知識的設定。因此,在本篇論文中,對於盲去噪模型,我們將專注於擁有注意力機制和殘差學習的RIDNet,並對其EAM層數、激活函數及損失函數進行修改,並與其他現有的深度學習模型進行比較,如DnCNN和CBDNet。這些比較將幫助我們更了解模型,並為影像去噪技術進一步提供改善指引。Item Modified Faster R-CNN with Applications to Cat and Dog Image Detection(2024) 黃世龍; Huang, Shih-Long隨著深度學習技術的快速發展,神經網絡在物件檢測應用的範圍和性能上不斷改進,取得了顯著的進展。本論文基於 Faster R-CNN 框架,通過調整參數和卷積神經網絡,應用於 Kaggle 數據集中的貓狗圖像檢測。通過觀察性能變化並使用統計重採樣方法來確保數據集對模型精度和召回率的影響,論文展示了重採樣方法和參數調整如何影響模型的精度和召回率。在調整到最佳參數後,論文展示了基於 ResNet 的 Faster R-CNN 模型在物件特徵提取和邊界框回歸中的有效性,並比較了單階段物件辨識與兩階段物件辨識的精度差異。實驗結果表明,作為 Faster R-CNN 模型中特徵提取卷積神經網絡的 ResNet 在該數據集上表現出色,且兩階段物件辨識模型在此數據集上有較好的精度表現。Item 以注意力模塊、殘差連接建構之雨量深度學習超解析度模型(2023) 江家浩; Chiang, Chia-Hao人口的過度增長、土地的開發以及化石能源的消耗在近百年來造成地球氣候的變遷。自然災害發生的頻率也因此增加,並造成許多人類的傷亡以及產業的經濟損失。為了減緩自然的衝擊與資源的消耗,各國政府機關制定了相關政策,以減緩消耗;科學家們研發全新的、乾淨的替代能源,另一方面,氣象學家們則是藉由模型的建構,來模擬並預測這些極端事件的發生,以利人們在災害來臨之前做好準備,減少損失。其中,以水資源的影響最為深遠,它是地球中最基本也是重要的循環之一,同時也是占比最重的溫室氣體,且與人類活動息息相關。我們以台灣為例,台灣雖然年降雨平均高達2,500毫米,然而人均水資源卻是低於全球平均值。這是因為台灣的崎嶇地形特色所致,再加上季風與洋流的作用,使得降水的時空間分布不均。若能預測雨量的分布,則可訂定相關的防洪或者儲水建設,以降低災害並最大化水資源的利用,故一個準確且高解析度的預測模型一直是科學家們努力研究的方向之一。現今普遍的做法是將氣象模型的模擬資料做降尺度來提升解析度以供區域性的參考。然而這些預測模型所消耗的計算資源甚鉅,且解析度有限,很難提供疆域小且地形交互作用複雜的地區有準確的預測結果。我們提出了一個以深度學習為基礎,並結合殘差連接、注意力模塊的超解析度模型,可望提升現有的氣象模型所產出之低解析度的結果之準確性和解析度。文末,我們也比較了其他氣象降尺度的方法和其他機器學習為基礎的模型,並在四種指標(平均絕對誤差、方均根誤差、皮爾森係數、結構相似性)、定量降雨預報檢測中優於其他氣象降尺度的方法。Item 噪聲學習:漸進式的樣本選擇(2023) 王景用; Wang, Jing-Yong在人工智慧蓬勃發展的年代,深度學習技術在不同的影像辨識工作中,都取得不錯的成果,然而這些計算模型的訓練任務往往都是建立在乾淨資料集上做的實驗。然而創建一個乾淨大型資料集往往都需要龐大的標注成本,甚至在一些大型的開源資料集中也有一些人為的標記錯誤出現。為了降低建構資料集的成本以及錯誤標籤對模型的影響,噪聲學習主要研究如何在有標記錯誤的資料集中訓練出穩定可用的模型。在過去的研究中,篩選乾淨樣本的技術,如高斯混合模型或是JS散度技術,都無法準確將所有的乾淨樣本篩選出來。因此,本文從模型預測穩定度的觀點,結合過去相關研究中加入KNN演算法,利用模型預測的穩定度與樣本特徵的相似度進行多階段的篩選。參考近期論文的設計,在雙模型架構設計下,我們發現在訓練前期KNN模型的預測能力比雙模型的預測能力還要差。為了有效利用雙模型的預測結果和KNN模型,我們用模型預測穩定度的指標,漸進式的使用KNN模型,幫助我們過濾出乾淨標籤以及噪聲樣本。實驗結果可以看到我們的方法在不同的噪聲類型、不同的噪聲率下都能有不錯的表現,證明我們方法的有效性。Item 視覺式智慧型高爾夫揮桿動作姿勢分析系統(2022) 石展兢; Shih, Chan-Ching全球參與高爾夫這項運動的人口數量正在逐步上升,根據世界高爾夫管理機構皇家古老高爾夫俱樂部(The R&A)公布2021年的全世界高爾夫球人數為6,660萬人,超越了2012年的6,160萬人來到歷史高點,可見高爾夫球己經成為全世界普及的運動。近年來運動科技興起,將運動與科技兩者相互結合,利用智慧化訓練能夠有效幫助運動員提升訓練品質並降低運動傷害發生。本研究以高爾夫運動為基礎,為避免高爾夫揮桿姿勢錯誤導致運動傷害,因此開發出一套視覺式智慧型高爾夫揮桿動作姿勢分析系統,讓使用者能夠隨時隨地將自身和教練兩者的高爾夫揮桿姿勢相互比較,可達到自行修正高爾夫揮桿姿勢之目的。 視覺式智慧型高爾夫揮桿動作姿勢分析系統輸入使用者之高爾夫揮桿影片以及教練之高爾夫揮桿影片進行高爾夫揮桿姿勢比對分析。本系統主要分為兩大步驟:高爾夫揮桿分解動作擷取以及三維人體模型姿勢比對分析。在第一步驟中,本研究使用輕量級網路ShuffleNetV2和循環神經網路Bi-GRU進行改良後擷取出使用者以及教練兩者的高爾夫揮桿八個分解動作。在第二步驟中,利用擷取出使用者以及教練兩者的高爾夫揮桿八個分解動作分別建構出可以表現出豐富人體資訊的三維人體模型,接著使用三維人體模型進行使用者以及教練的高爾夫揮桿姿勢比對分析。 本研究將高爾夫揮桿動作拆解成八個分解動作,依序是擊球準備(address)、起桿(toe-up)、上桿(mid-backswing)、上桿頂點(top)、下桿(mid-downswing)、擊球(impact)、送桿(mid-follow-through)以及收桿(finish)。本研究使用GolfDB資料集[Mcn19]所蒐集的高爾夫揮桿影片進行訓練及測試,實驗結果顯示高爾夫揮桿分解動作擷取之準確率為86.15%。另外,本研究採用之三維人體模型是由6,890個節點所組成的人體網格,該模型將人體分解成24個身體部位,實驗時利用該模型之擬真人體特性能夠更精準地判斷使用者及教練之高爾夫揮桿姿勢差異。如上所述,本研究所提出之視覺式智慧型高爾夫揮桿動作姿勢分析系統具有效性。Item 運用類神經網路方法分析基於面向的情感極性分類(2022) 王皓平; Wang, Hao-Ping隨著時代以及科技技術的成長,人們不像過去一樣,需要查看報紙、購買雜誌、詢問左右鄰居的情報才能知道自己想要得知的資訊。在科技技術的成長下,不管是餐廳的評價、筆記型電腦的實用程度,大部分的人們都可以使用網際網路來查看是否有所想要的資訊。本論文使用的資料集由SemEval-2014 Task 4官方所提供,並且含有四項子任務:(一) Aspect term extraction、(二) Aspect term polarity、(三) Aspect category detection、(四) Aspect category polarity,本論文進行第二項子任務研究,判斷出句子中的面向詞是正面、負面或中立,評估方式採用Accuracy,並且與當年競賽結果相比較。本論文實驗方法將資料先進行前處理並且轉成詞向量作為輸入的來源,以及將極性做情感標籤,並且使用Bi-LSTM (Bi-directional Long Short-Term Memory)、Self-attention(自注意力機制)及使用Two-level encoding對資料進行訓練。最後去比對每種不同模型的準確率,結果顯示Two-level encoding預測準確率餐廳達82%,筆記型電腦則達78%。Item 利用啟發式法則與數種訓練策略來評估中國跳棋程式(2023) 江曛宇; Jiang, Syun-Yu中國跳棋(Chinese Checkers)是一個知名且充滿挑戰性的完全資訊遊戲。與一些其他的傳統遊戲如五子棋、圍棋不同,賽局樹的搜索空間並不會隨著遊戲的進行而越來越小。若是單純使用AlphaZero架構之演算法,在短時間內甚至難以訓練出初學者程度之程式。過去雖有使用蒙地卡羅樹搜索法結合深度學習與強化學習,並應用於中國跳棋上的演算法,但是仍有改進的空間。若是能夠適當的加入一些中國跳棋的先備知識,應該能使棋力進一步的提升。本研究針對中國跳棋設計數種策略,修改了前代程式Jump的設計,人為的增加先備知識,以期有更好的棋力,並且針對中國跳棋在神經網路訓練初期棋力很弱的問題,提出一連串的解決方案與策略,使其能夠在不使用人為訓練資料以及預訓練的狀況下,能夠獲得一定的棋力,並且對這些策略的特點進行探討,分析出各個策略的優缺點。