地球科學系(含 海洋環境科技研究所)

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/59

本系設立的宗旨,首在養成學生具備地球科學五大學術領域–地質學、大氣科學、海洋科學、天文學和地球物理–充分之本職學能;本系的教育目標,則首重致力培養有志從事地球科學之專精人才,以培育優秀之地球科學研究人才和實務工作的專業人才為主軸,並以培養優良的中學地球科學師資為輔。特別是在國內各地球科學相關系所中,本系是唯一同時涵蓋五大地球科學研究領域,並擁有師範大學在科學教育專業基礎的高等學術機構,此為本系之特色。若志在從事中等學校地科教學,本系亦可提供地科教學知能和教育專業知識,充分培育健全之地球科學師資。

在課程上,為營造更優質的學習與研究環境,本系已適度調整原以師資培育目標為主的舊有課程架構,整合各地球科學次領域之基礎課程,降低本系必、選修課程之比例,大幅減少各次領域之必修課程學分,以增加學生在各次領域課程選修之自由度及彈性,進而充分落實各次領域之專業進階課程。此外本系並積極鼓勵學生,實際參與實驗、撰寫論文、從事專題計畫研究等,以豐富其研究經驗,訓練學生使其具備獨立研究之精神與能力。經由選修本系提供之更多進階專業課程,進而厚植學生之理論基礎、充實其專業背景,並強化其選定目標次領域之學術養成和專業訓練;連同充足的研究經驗,本系學生的未來發展,將更具時代性與面對挑戰時的競爭力,進一步達到「博而精、廣而深」的終極目標。近來本系更積極增聘優秀外籍專任師資,以全英語教學方式授課,期能增加學生之國際觀與國際競爭力。

本系在碩、博士班研究所的教育上,採一系多所之架構,除地球科學研究所外,還包括海洋環境科技研究所。本系研究所的研究重點與發展方向,首在地球科學各領域之深耕與研究發展,並加強各次領域間之跨學門合作,以進一步提升本系之學術研究及國際化,並為本系學生的訓練和學習,提供全面全方位的考量,以訓練學生從容面對多變的世界,因應未來的挑戰。

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    淺層磁力測勘之小波分析
    (2004) 鄭軒儒; Andres Shiuanru Jeng
    摘要 以傳統濾波方法對磁力資料進行處理,依所欲呈現的信號頻帶設計高通、低通或帶通等不同型式濾波器。雖然異常體可以有強化的效果,但是特定波長的訊號不一定是目標物所專屬,以致於在濾波之後原本無異常訊號之處反而也被加強,其原因是實際磁力所得信號與富氏轉換時所用的基底函數為無限長弦波兩者之間有不相合之處。在信號空間域-波數域的定位問題上,加窗富氏轉換與小波分析的技術提供了解決方案,而後者的發展更應用到處理重力或磁力資料處理。小波母波可以延伸,經過分析之後細節信號在越多階分析細節信號寬度越大,其細節信號的提出與淺層小區域磁力測勘所需要的目標信號相當一致,本文透過竹山槽溝一維信號的處理與解釋,印證了兩者之間的關係。其中,分析之後的磁力總量與梯度之細節信號上,前者可能是低頻能量比例太高,以致其細節信號重組後之合成信號仍無法回復原始的總量信號,因此梯度信號分析結果會具有地淺部下異常意義顯示。同時對師大分部實驗區與古根漢博物館預定地二維磁力梯度資料進行分析與信號重組,在濾除掉長波長信號之號,可以很清楚的看出加強了S/N值。
  • Item
    鄂霍次克海岩心MD012414之磁學研究—180萬年來東北亞古氣候及古環境變遷
    (2003) 周祐民; CHOU, YU-MIN
    本研究對2001年IMAGE VII航次採自鄂霍次克海中部Deyugin Basin中心編號MD012414海洋岩心進行古地磁及磁學參數分析,岩心點址經緯度為(149°34.80’E, 53°11.77’N),水深1123公尺。 古地磁學研究分析岩心中沈積物之自然殘磁方向及強度,主要目的為建立該岩心之古地磁地層及古地磁場長期變化型態,提供岩心對比及年代控制機制。而磁學性質之研究則包含磁感率、逆磁滯殘磁及等溫殘磁等,這些磁學參數主要探討沈積物中磁性礦物種類、粒度及含量變化,進而探討研究地點古環境、古氣候變遷模式。 自然殘磁之結果分析指出本岩心總長度53.88公尺涵蓋了松山(Mayuyama)反向世代上半部與布倫(Brunhes)正向世代,可提供本研究區域近180萬年來更新世 (Pleistocene) 相當完整的資料。記錄中出現多次地磁場反轉紀錄,分別為Upper Olduvai Event、Cobb Mountain Event Jaramillo Event、及Mayuyama – Brunhes Boundary,其年代各為177萬年、124~121萬年、107~99萬年、及78萬年前。由年代模式,計算沈積物平均沈積速率約3 cm/kyr。記錄中亦出現多次古地磁場極性異常事件(Excursion)。 磁感率隨深度變化結果與沈積物顆粒大小及氧同位素分析初步結果相比較(李孟陽等,未發表資料),我們發現磁感率高值區出現在粗顆粒百分比高之沈積物區,同為冰期時之產物,由於磁感率高低反應磁性礦物含量相對之多寡,因此推論冰期時磁性礦物含量較高,而間冰期時則下降。樣品所得逆磁滯殘磁除以磁感率之結果,可去掉磁性礦物量變化影響,明顯反映出磁性礦物粒度大小變化,本岩心分析之結果顯示磁性礦物之粒度與一般沈積物顆粒粒度之變化相當一致,顯現冰期時沈積物中磁性礦物顆粒粒度較粗,間冰期時磁性礦物顆粒較細的特性。從這些結果與前人之研究,我們認為冰期時鄂霍次克海沈積物可能主要來自東邊的勘察加半島(Kamchatka Peninsula)火山地區,由冰川刮蝕帶來之沈積物中具有含量較高顆粒較粗之磁性礦物,而在間冰期時,則可能由周遭帶來較多海洋及陸源沈積物,其中磁性礦物較少顆粒較細。 等溫殘磁測量結果中,出現多處加磁變化異常區域,當弱磁場(50~75 mT)加磁時等溫殘磁值下降,加磁至強磁場時才增加,此現象有可能是磁學特性特殊之礦物,如菱鐵礦(Siderite, FeCO3)所造成。由等溫殘磁所得結果與S-ratio及剛性等溫殘磁結果指出,沈積物中主要磁性礦物為磁鐵礦;排除等溫殘磁加磁變化異常區域,我們在岩心深度9.20~14.98公尺、39.06~39.76公尺及40.67~41.88公尺處發現具有較高含量的赤鐵礦或褐鐵礦,初步推論這些磁性礦物的來源可能與風積物有關。其可能機制為:風成黃土在乾冷的冰期形成,當蒙古及西伯利亞地區高壓產生時,吹起近地表強烈乾冷的風,將泥沙從黃土高原吹送上平流層,經由西風吹送,最後落入鄂霍次克海及附近區域沈積。 本岩心中也發現數層火山灰,其中3.35公尺處之火山灰層應相當於Gorbarenko(2002)報導之K2火山灰層,可能為在26 ka時位於Onecotan島之火山Nemo – III 所噴發。