Enumeration and Asymptotics on Restricted Growth Functions of Order 2

dc.contributor林延輯zh_TW
dc.contributorLin, Yen-Chien_US
dc.contributor.author陳怡廷zh_TW
dc.contributor.authorChen, Yi-Tingen_US
dc.date.accessioned2019-09-05T01:05:31Z
dc.date.available2015-08-13
dc.date.available2019-09-05T01:05:31Z
dc.date.issued2015
dc.description.abstract本篇論⽂中,我們延伸限制成⾧函數到更高次,並找到二次限制成長函數和B型對稱分割的⼀對⼀對應關係。為了改善透過傳統⽅法得到的漸進結果,我們介紹⼀個類似⽜頓法的演算法。假設二次限制成長函數為均勻分佈,我們得到二次限制成長函數最大值的期望值和變異數的漸進公式。最後,我們驗證二次限制成⾧函數最大值的分佈收斂到常態分佈。zh_TW
dc.description.abstractIn this thesis, we extend the restricted growth functions to higher order and find a bijection between restricted growth functions of order 2 and symmetric partitions of type B. To improve the asymptotic results via traditional methods, we introduce an algorithm which is similar to Newton-Raphson method. Assuming that the restricted growth functions of order 2 are uniformly distributed, we obtain the asymptotic formulae for the expectation and variance of the maximum in a random restricted growth function of order 2. Finally, we verify that the distribution of maximum in restricted growth functions of order 2 will converge to a normal distribution.en_US
dc.description.sponsorship數學系zh_TW
dc.identifierG060240002S
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G060240002S%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101521
dc.language英文
dc.subject近似常態性zh_TW
dc.subjectHayman admissible 函數zh_TW
dc.subject機率分佈zh_TW
dc.subject限制成⾧函數zh_TW
dc.subject鞍點法zh_TW
dc.subjectasymptotic normalityen_US
dc.subjectHayman admissible functionsen_US
dc.subjectprobability distributionen_US
dc.subjectrestricted growth functionsen_US
dc.subjectsaddle-point methoden_US
dc.titleEnumeration and Asymptotics on Restricted Growth Functions of Order 2zh_TW
dc.titleEnumeration and Asymptotics on Restricted Growth Functions of Order 2en_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
060240002s01.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format

Collections