電磁驅動之複合式高速衝印系統開發應用於高密度非球面精微模坑陣列成型研究

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

本研究旨在開發一「電磁驅動」往復式進給模組,規劃應用於複合式高速衝印系統,以便快速製作「高密度非球面精微模坑陣列」。研究透過電流磁效應原理,以家用交流電源驅動電磁驅動機構,透由交流電交變特性,使電磁驅動機構的磁極隨時間交變,作動頻率達120 Hz,可獲致高速往復運動目的。實驗以此高速往復運動,驅使電磁驅動機構的衝擊頭對材料表面進行高速衝印,材料經彈性及塑性變形過程,模坑表面產生應變硬化,晶粒組織變得更緻密,能有效改善模坑表面疲勞強度及耐磨耗性,達非球面模坑製作目的。衝擊頭表面以含硼聚晶鑽石(BD-PCD, Boron doped polycrystalline diamond)及碳化鎢為材料,並於開發的線上研磨機構,進行非球面研磨製作,其峰谷差值(P-V)分別達11.78 μm及6.46 μm,表面粗糙度為Ra 0.78 μm與Ra 0.46 μm,經高速衝印結果顯示,成型的微模坑表面粗糙度分別可達Ra 0.77 μm與Ra 0.35 μm。實驗發現,不同的模仁材料、電磁驅動機構彈簧常數及衝擊頭深度位置等三因素,影響模坑的深度。電磁驅動機構以4100匝設計,當模仁以退火鋁合金為材料,彈簧常數2.7 N/mm,及衝擊頭深度位置在26 μm時,所創造出的衝擊力,能使非球面模坑深度達15 μm。在工件進給速度方面,實驗也發現,模仁在2160 mm/min高速移動條件下,模坑能獲得最高的幾何形狀。經實驗證實,於86 mm2面積內,高速衝印成型完整的400顆高密度非球面微模坑,時間僅需3.3秒,且具高一致性,模坑與衝擊頭重疊率可達95%以上,證實本研究提出的電磁驅動往復式進給模組,能達高速、高密度及高一致性衝印成型的能力。
This study aims to develop an "electromagnetic drive" reciprocating feed module, planning for composite high-speed photofinishing systems, in order to quickly create " high-density aspheric micro-dimple array." Permeation current magnetic effect principle to household AC power source driving the electromagnetic drive means, by alternating current through an alternating characteristic so that the poles alternating electromagnetic driving mechanism over time, the actuation frequency of 120 Hz, high-speed reciprocating motion actuator available object. In this experiment reciprocated at high speed, driven by an electromagnetic drive mechanism of the stamping tool for high-speed stamping surface of the material, and the elastic material is plastic deformation, the dimpled surface of the mold to produce a strain hardening, grain structure becomes denser, can effectively improve the mode pits surface fatigue strength and wear resistance, of molded aspheric dimple production purposes. The stamping tool to BD-PCD and tungsten carbide material, and grinding mechanism developed online, making aspheric surface polished, which valley difference (PV) of respectively 11.78 μm and 6.46 μm, a surface roughness of Ra 0.78 μm and Ra 0.46 μm, results show that by high-speed stamping, micro-molding die hole up to the surface roughness Ra 0.77 μm, respectively, and Ra 0.35 μm. It was found that three different factors mold core material, the spring constant of the electromagnetic driving mechanism and the depth position of the stamping tool and the like, affect the depth of the dimple. The electromagnetic driving mechanism designed to 4100 turns, when the annealing mold core aluminum alloy material, the spring constant of 2.7 N/mm, and the depth position at stamping tool 26 μm, the impact created, can make the dimple depth of an aspheric mold 15 μm. In the workpiece feed speed, the experiment also found that the mold core at 2160 mm/min high-speed movement conditions, the highest figure hole geometry can be obtained. Confirmed by experiments, 8x6 mm2 in area, forming a complete high-speed stamping of high-density 400 molded aspheric micro dimples, takes only 3.3 seconds, and having a high consistency, the moil mode dimple overlap ratio of 95 %, this study presents proven electromagnetic drive reciprocating feed module, capacity can reach high speed, high density and high consistency of stamp molding.

Description

Keywords

電磁驅動, 高速衝印系統, 衝擊頭, 非球面精微模坑陣列, Electromagnetic drive, High speed stamping system, Stamping tool, Aspherical micro-dimple array

Citation

Collections