內含二極體之矽上微環共振器之研究與應用
No Thumbnail Available
Date
2006
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
本文提出以絕緣層上矽晶為基材之微環型諧振器並應用自由載子電漿效應所組成之主動光學元件開關器;我們提出了元件的設計並對元件參數進行優化。將環形波導區域結合二極體之結構以電壓調變環形波導區域中雜質的濃度變化,以電子電洞對分離及再復合的載子濃度變化來改變其折射率,藉此從波導的輸出端擷取出不同的特定信號,並於此論文中設計微環形共振腔的幾何結構對其共振波長的影響並探討其傳送功率值、串音干擾及耦合效率之影響特性分析。
接著,我們將此光學元件開關器應用於高密度分波多工的光開關網路系統中,並對其路徑損失、訊噪比及開關元件數在不同開關系統中作比較分析。利用這新的光學元件開關器,可以有效的減少元件尺寸,並可達到任意選取特定信號至不同的輸出端,如此才可充分利用有限的波長資源。最後,本文提出一新型光波長路由架構並對其通道數增加進行分析。
In this thesis, we design a silicon-on-insulator (SOI) waveguide switch which used the microring cavity structure. We also utilize free carrier plasma effect (FCPE) to vary local refractive index so as we can change the signal light propagation direction. We propose active silicon waveguide-coupled microring resonator using PN junction diode and Schottky diode. It doped the Boron and Phosphorous ions inside the micro ring structure and added voltage to change the carrier concentration distribution. By changing carrier concentration distribution, the effective refractive index will be changed. We can drop the particular wavelength through the switch element device. By this characteristics, it will be applied to optical cross connect. The insertion loss, cross talk and the transmission status are discussed in the thesis. The path loss and SNR were also calculated. We apply for our designed optical switch in several wavelength division multiplexer (WDM) photonic switching networks. We discuss the photonic networks with considering the following parameters: number of switch elements, number of cross talk, path loss, and device length in this thesis.
In this thesis, we design a silicon-on-insulator (SOI) waveguide switch which used the microring cavity structure. We also utilize free carrier plasma effect (FCPE) to vary local refractive index so as we can change the signal light propagation direction. We propose active silicon waveguide-coupled microring resonator using PN junction diode and Schottky diode. It doped the Boron and Phosphorous ions inside the micro ring structure and added voltage to change the carrier concentration distribution. By changing carrier concentration distribution, the effective refractive index will be changed. We can drop the particular wavelength through the switch element device. By this characteristics, it will be applied to optical cross connect. The insertion loss, cross talk and the transmission status are discussed in the thesis. The path loss and SNR were also calculated. We apply for our designed optical switch in several wavelength division multiplexer (WDM) photonic switching networks. We discuss the photonic networks with considering the following parameters: number of switch elements, number of cross talk, path loss, and device length in this thesis.
Description
Keywords
絕緣層上矽晶, 波導, 微環形共振器, 有限差分時域法, 光束傳播法, 光網路, 光開關, SOI, waveguide, microring resonator, Finite Difference Time Domain, Beam Propagation Method, photonic network, optical switch