學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73905
Browse
2 results
Search Results
Item 空間各向異性與無序性之 (3+1)維量子海森堡模型的蒙地卡羅研究(2014) 高銘佐; Ming-Tso Kao本論文主要是使用蒙地卡羅方法 (Monte Carlo Method) 來模擬研究 (3+1) 維量子海森堡模型 (quantum Heisenberg model)。特別是我們探討了空間各向異性 (spatial anisotropy)與無序性 (disorder)對此模型特性之影響。 研究空間各向異性量子海森堡模型的動機是想要針對 dimerization 類別的海森堡模型,定量上去探討在量子臨界點附近 (quantum critical point) 新建立的普適關係 (universal relation),即 $T_N/\sqrt{c^3}\propto\sf{ M_s}$ 。其中 $T_N$ 是 Néel temperature ,$c$ 是自旋波速 (spin wave velocity)及 $M_s$ 是交錯磁化密度 (staggered magnetization density)。 我們所作的模擬結果與 Sushkov \cite{Sushkov:2012:PRB} 藉由級數展開法 (series expansion) 所得到的結果是一致的。 另外對無序性的研究,我們計算三維鍵結無序 (bond disorder) 量子海森堡模型的 $\overline{T_N}$ 和 $\overline{M_s}$ ,方法是引進兩個參數,即隨機耦合強度 $D$ 和隨機機率 $P$ ,來描述反鐵磁交換耦合 (exchange couplings) $J_{ij}$ 的隨機性。$D$ 和 $P$ 的值皆在 $0$ 和 $1$ 之間,每個交換耦合強度為 $J_{ij}(1+D)$ 或 $J_{ij}(1-D)$ 的機率分別為 $P $ 及 $(1-P)$ 。 我們發現對這種無序性模型在靠近乾淨系統附近,用平均交換耦合強度 $\overline{J}$ 歸一化的 $\overline{T_N}$ (即 $\overline{T_N}/\overline{J}$) 和交錯磁化密度 $\overline{M_s}$ 之間也呈現一種線性關係。Item 人工神經網路在物理上的應用:二維正方形晶格上Potts model 相變之研究(2018) 李建德; Li, Chien-De這篇論文主要探討了卷積神經網路(convolutional neural network)在二維正方形晶格上的Potts model之應用。我們使用卷積神經網路對蒙地卡羅演算法模擬出的自旋狀態加以分析。不同於相關文獻中常用的方法,在本次研究中,我們使用低溫有序相中的自旋狀態作為訓練集,並以輸出向量O ⃗之長度R做為主要觀測量。藉由此方法,我們得到了和已知文獻上一致的結果。此方法減少了以人工神經網路研究凝態模型時所耗費的計算資源。使用此方式訓練出的卷積神經網路除了可以偵測臨界溫度T_c外,亦可用來辨識相變的類型為一階或二階。