學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73905

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    紅熒烯中介層對Co2Ni/矽(100)薄膜磁特性、結構之影響
    (2025) 蔡培元; Tsai, Pei-Yuan
    有機半導體以其獨特的應用潛力和製造優勢,激發了學界對其大規模研究的熱情,被廣泛認為是下一代半導體技術的關鍵。紅熒烯是一種具有高載流子遷移率和優異光電性能的有機半導體材料,廣泛應用於場效應電晶體(field-effect transistor, FET)、有機光電元件和有機發光二極體(organic light-emitting diodes, OLED)等領域。鈷鎳合金因其在磁性材料中的優越性,如低矯頑力和可調的磁異向性,成為廣泛研究和應用的重要對象,這些合金的性質可以透過調整鈷和鎳的比例來優化。本研究深入探討了Co2Ni薄膜在矽基板和紅熒烯界面上的磁特性及結構。包括利用磁光科爾效應、科爾顯微鏡和鐵磁共振技術來觀察磁特性的變化,以及原子力顯微鏡、X光繞射、X光反射率和X光光電子能譜來分析薄膜的表面形貌、晶體結構、界面粗糙度和化學組成。研究結果表明,Co2Ni /矽(100)系統矯頑力沒有超過50 Oe,隨著紅熒烯的引入,Co2Ni薄膜矯頑力上升、改變磁域尺寸大小和表面形貌更加蜿蜒,以及提升表面粗糙度。 Co2Ni薄膜成長顯示薄膜呈現fcc結構(111)方向奈米晶生長,晶粒大小為幾個奈米,而Co2Ni薄膜深度分析確認了薄膜中鈷與鎳的均勻成分成長。紅熒烯引入導致電子能階偏移約為0.1 eV,顯示對紅熒烯中介層對於鐵磁層電子結構有顯著影響。紅熒烯中介層效應對磁性合金薄膜成長應用的潛在意義,特別是在提高矯頑力、方正度以及改變磁域結構對於合金鐵磁性薄膜製程有重要角色。
  • Item
    超薄鐵銥合金的成分比例與結構研究
    (2011) 李亞倫; Ya-Lun Li
    本論文主要研究鐵超薄膜在銥(111)基底上的成長模式、表面結構、化學偏移及合金成分比例。樣品製備與實驗均在超高真空環境下進行,並透過低能量電子繞射與歐傑電子能譜進行實驗觀測。在室溫300 K鐵超薄膜的成長方面,我們首先以歐傑電子能譜觀察一系列不同厚度之鐵薄膜,發現鐵薄膜在銥單晶上的化學偏移與塊材電負度所預期的結果有相反的趨勢。當鐵薄膜厚度超過2 ML時,其L1M1M2歐傑電子動能隨厚度增加而下降,銥N1N2N7歐傑電子動能隨厚度增加而上升,介面效應仍然明顯;厚度超過4 ML時,鐵L1M1M2歐傑電子動能變化趨於平緩,介面效應減弱,此時樣品的化學狀態以塊材鐵為主。從室溫300 K鐵超薄膜成長之低能量電子繞射實驗結果發現,當鐵薄膜厚度超過5.8 ML時,鐵原子主要是以bcc(110)在fcc(111)上的Kurdjumov-Sachs (KS)模式進行磊晶;當厚度小於1.8 ML時,鐵原子則以基底fcc(111)的方式進行磊晶。鐵超薄膜樣品加熱退火至800 K時,我們從歐傑電子能譜的強度分析可以得到穩定的鐵銥成分比例為1:3;化學偏移的分析發現銥N1N2N7歐傑電子動能比起乾淨銥單晶有下降的趨勢,因此排除鐵原子退吸附的可能;在低能量電子繞射實驗結果中,電子入射動能120 eV時可以發現清楚的(2×2)亮點。由以上三個實驗結果我們推測鐵銥形成規則合金FeIr3,最後透過氬離子濺射實驗進行深度分析,發現實驗所得之濺射效率與FeIr3模型的計算結果相差3%,顯示鐵銥確實形成規則合金FeIr3。另一方面,在低能量電子繞射實驗結果中,電子入射動能75 eV時,可以發現鐵銥合金表面上存在有鐵的兩種結構:bcc(110) KS與bcc(111) (3/2×3/2)R20°。當鐵超薄膜樣品厚度大於5.8 ML時,此兩種結構會同時存在於加熱退火後的FeIr3合金表面;當厚度小於1.8 ML時,合金表面將只剩下bcc(111)結構。
  • Item
    鈷在鉑上形成超尖磁性奈米針尖之研究
    (2009) 江佳倫; Chia-lun, Chiang
    我們利用場離子顯微鏡在超高真空的環境中觀察兩種磁性奈米針尖的成長,一種是利用表面皺化機制形成的鈷鉑合金金字塔形奈米針尖;另一種是藉由鈷在鉑(111)面的S. K. mode長成以鉑為基底的鈷奈米針尖。前者針尖生長於皺化形成的鈷鉑合金多面體之稜線交接處,分別位於{531}及{210}切面,{531}切面的金字塔是由擴張的{111}、{110}、{311}切面堆積,{210}切面的金字塔則由擴張的{110}及兩個{311}切面組成。而後者針尖是在室溫及20K時鍍鈷4~5ML於鉑(111)面,鈷原子先依鉑基底以FCC結構排列,再於其上堆積單顆、雙顆或三顆原子團,這些在鉑(111)面成長的鈷原子團即是一種無特定針形的奈米針尖。
  • Item
    鐵超薄膜在白金(111)面上的成長
    (2007) 許宏彰
    我們利用歐傑電子能譜(Auger Electron Spectroscopy, AES)、低能電子繞射(Low Energy Electron Diffraction, LEED)、以及紫外光電子能譜術(Ultraviolet Photoelectron Spectroscopy, UPS)來深入探討鐵超薄膜鍍於Pt(111) 的成長模式以及在高溫形成合金時的成份、結構變化。 室溫下,鐵薄膜鍍於Pt(111)的成長模式為三層平整成長之後再以三維島狀的S. K. mode。由AES、LEED均能得到相同的結論。而隨著厚度的增加也可以發現在表面有Domain Rotation的行為。因此在LEED Pattern出現了新的衛星亮點。 1,2 與 5 ML Fe/Pt(111)升溫過程各自在520、570與620 K開始在界面擴散;而在670、670與720 K時,開始有合金的行為;而對於2與5 ML的系統,在820與870 K時Domain Rotation的行為隨著溫度的昇高而消失。對於1 ML 深溫至1060 K時,由於表面的重構使得表面鉑原子間距加大,LEED Patternt出現新的(1x1)繞射亮點。
  • Item
    透過氫氣作用控制磁性層間交互耦合效應
    (2017) 陳宜樺; Chen, Yi-Hua
      長期以來,鈀一直作為氫氣解離和吸附的高效催化劑。在鈀合金或內米結構中,鈀的氫化容易引起相鄰材料有顯著的鄰近效應。在本實驗中,我們在超高真空中使用電子束蒸發磊晶法,在MgO (001)的基底上製備了磁性界面耦合系統。通過退火處理,可以得到平坦的MgO (001)表面,用來沉積Fe/Pd/Fe三層膜。   在一定鈀的厚度下,通過磁光柯爾效應在平行(In-Plane)方向,可以在Fe/Pd/Fe/MgO(001)系統中觀察到清楚的雙磁滯曲線。這現象說明頂層和底層鐵層之間的反鐵磁耦合。隨著室溫下的氫氣脫吸附,反鐵磁層間耦合有明顯的變化,如雙磁滯曲線的矯頑場變化所示。這結果表示,鐵/鈀多層膜系統未來可以應用為敏感性高的氫氣感測GMR傳感器
  • Item
    鎳超薄膜在鉑(111)基板上之表面結構及表面磁光性質研究
    (2003) 蘇炯武; Chiung-Wu Su
    本實驗是利用歐傑電子能譜術、低能量電子繞射儀、紫外光電子能譜術以及利用表面磁光科爾效應來研究鎳金屬超薄膜在鉑金屬(111)表面上的結構及磁光性質。討論的範圍首先著重在鎳超薄膜在鉑(111)表面上的磊晶成長模式、結構相圖和合金形成。我們經由歐傑電子能譜、低能量電子繞射及紫外光電子能譜的測量中發現鎳超薄膜在鉑單晶上是以2個原子層的層狀模式成長,且在磊晶的過程中我們更利用低能量電子繞射發現鎳超薄膜在鉑(111)表面上有一些有趣且特殊的結構:偽(1×1)超結構、(√3×√3)R30º、Ni(1.1×1.1)非同調性磊晶、衛星點結構以及(2×2)超結構。鎳原子發現在高溫時會擴散與鉑形成合金,當我們在進行0.8到3.0個鎳原子層熱處理時,結果發現當鎳的厚度愈高,鎳與鉑開始形成合金的溫度也就愈高。為了提高系統鎳超薄膜的膜厚準確度,我們利用兩種理論模型來計算並決定鎳超薄膜膜厚。此外,當經過高溫回火的鎳/鉑(111)表面經由離子濺射技術後亦發現表面組成大多為鉑原子所佔據,此部分確立了鎳原子與鉑原子形成合金的事實。 第二部分我們在鎳/鉑(111)表面上覆蓋銀原子層來研究鎳鉑合金形成因其所受到之影響並與未加銀原子層來做比較。結果發現,覆蓋銀原子層的鎳薄膜層必須上升到更高溫時才與鉑原子形成合金,而且銀原子層在熱處理的過程中並不擴散進入基底且都位於表面的最上層,更有趣的是我們發現在1 ML Ag/1 ML Ni/Pt(111) (ML:原子層)的樣品中經由高溫處理後形成有趣的(2×2)表面超結構,經由晶格常數計算、以及離子濺射實驗後,我們初步推斷最上層的銀原子以1/4的覆蓋率形成(2×2)超結構之後剩餘的3/4銀原子與最上層的1/4殘餘鎳原子形成Ag(75%)Ni(25%)的合金原子層,剩餘的則為鎳鉑合金層。 第三部分我們利用表面磁光科爾效應來探測鎳超薄膜在鉑(111)表面上的磁光性質。鎳超薄膜在諸多系統中都發現具有dead layer的磁性質,故當我們在磊晶過程中探測鎳薄膜的磁光訊號中發現,將近有7層覆蓋率的鎳原子在室溫裡是沒有磁性的,累積到將近24層的鎳原子測得之最大科爾旋轉角也只有0.02º,並且在熱處理的實驗當中,我們發現膜厚與系統的居禮溫度有很大的關連性,甚至極有可能低於室溫。 此外,當磁性超薄膜鎳/鉑(111)表面間加進鈷原子層後,初步發現鎳原子會有初期升溫的過程中先與鈷原子在鉑表面上混合,高溫時再擴散進入鉑基底的特性。經由深度分析的實驗,雖然證明了鎳鈷原子都會與鉑形成合金,但是我們發現鎳原子卻擴散的比鈷原子更為深層。1 ML Ni/1 ML Co/Pt(111)樣品在垂直磁光效應的測量中,也同樣發現在鎳鈷原子混合時磁光訊號有微量的增加,然而之後主要的磁光訊號大增主因來自於鈷鉑形成合金所致,科爾旋轉角在高溫回火後增加為原先的兩倍之多,當我們對於1 ML Ni/1 ML Co-Pt 合金表面進一步的研究中發現,系統的居禮溫度隨著鎳鉑原子在表面的相對組成而有強烈的變化,而且接近甚至低於室溫,在表面化學組成計算後可以初步推論,若鉑原子含量在表面層愈多、鎳原子愈少的狀況下,系統的居禮溫度就愈低。結果發現,1 ML Ni/1 ML Co-Pt 合金表面樣品在經由830 K高溫回火後所測得之系統居禮溫度為275 K,此時所對應的表面化學組成為Pt(69%)Co(29%)Ni(2%)合金層。 最後,鏡射系統1 ML Co/1 ML Ni/Pt(111)的磁光訊號測量也發現許多有趣且不同於1 ML Ni/1 ML Co/Pt(111)系統的物理現象,在升溫的過程當中發現,特定的溫度範圍對於兩種系統有著截然不同的行為,我們發現在600 K到725 K的磁光訊號變化中對於Ni/Co/Pt薄膜有一極大值,然而對於Co/Ni/Pt薄膜卻發現有一極小值。此外,Co/Ni/Pt薄膜發現具有比Ni/Co/Pt薄膜更大的的矯頑磁場,我們初步認為這些有趣的物理現象來自於表面鎳鈷鉑原子的相對組成,以及許多特定穩定合金結構的形成,所以當我們又利用紫外光電子能譜來觀看這兩種磁性超薄膜系統經過高溫熱處理後時,我們可以確定表面原子態大多來自於鉑原子,換句話說,高含量的表面鉑原子是促成系統具有相當低的居禮溫度的主因。